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Effect of protein shape on multibody interactions between membrane inclusions
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The elastic interaction of membrane inclusions provides one of the simplest physical realizations of multi-
body forces. Here we show how the cross-sectional shape of the inclusion greatly changes the character of the
interaction, and illustrates a pattern formation mechanism. The formalism provides a transparent framework for
modeling bilayer-inclusion boundary effects on the multibody interaction.

PACS number~s!: 87.15.Kg, 87.18.Hf, 68.10.Et, 87.16.Dg
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There has been a great deal of interest and work
bilayer-mediated forces between membrane proteins~inclu-
sions! @1–6#. Here we address interactions that are induc
by elastic deformations, since they are thought to play
important role in the aggregation of membrane prote
@7–10#. An embedded inclusion creates a deformation fi
in the surrounding membrane that influences neighboring
clusions. The nature of this deformation field is dictated
the inclusions’s elasticity and shape, and by the elastic p
erties of the membrane. In an earlier paper@7#, we examined
the deformation field generated by circularly symmetric
clusions embedded in a membrane whose elastic energ
determined by its curvature. We found that the interact
betweenN.2 inclusions was nonlinear and strongly no
pairwise. Therefore, simple pairwise theories of inclusion
gregation driven by membrane curvature cannot accura
describe assemblies of inclusions. This led to the surpris
result that aggregates relax to stable equilibria even tho
the pairwise component of the interaction is repulsive. H
we generalize the theory to inclusions whose cross-secti
shapes are not circular. The orientation angles of the in
sions appear as additional degrees of freedom which ad
the complexity of possible spatial patterns. We will explicit
derive a multibody interaction that provides a simple fram
work for studying how inclusion geometry~cross-sectiona
shape! coupled with membrane geometry~curvature! can
lead to interesting and unusual aggregation behavior.

Our derivation of the interaction energy begins by rep
senting a membrane, as a surfaceS, parametrized by the
height,h, above the~x, y! plane. The projection ofS onto the
~x, y! plane is denoted bys. Denote points inS by X, and
points in s by x5(x1 ,x2). Unit vectors in the coordinate
directions are denoted~1, 2, 3!. Our notation is summarized
in Fig. 1. We will restrict our attention to a membrane sy
tem consisting of rigid inclusions whose contact curve w
the membrane,C, is an ellipse, and the tangent planes ofS
along C have a uniform contact angle,g. The same math-
ematical formalism and results derived here will also ap
for inclusions with undulating bilayer-inclusion conta
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curve, since the boundary conditions will have essentially
same form. This can be physically realized when an inc
sion consists of different subunits with different conta
angles for the bilayer, as shown in Fig. 1~b!. In both cases
there will be an orientation dependent interaction term in
energy, which will generate a torque on the inclusion tend
to orient itself so that the inclusion-bilayer contact cur
matches as closely as possible to the local shape of the m
brane background.

In the small deformation limit,u¹h(x)u!1, the local
mean curvature ofS at X5x1z3 is k(x)[ 1

2 ¹2h(x). The
elastic bending energy for a membrane is given by@11#

Em~X!5
B

2 E
S
@¹2h~x!#2dx52BE

S
k2dx, ~1!

whereB is the bending modulus. We neglect the total Gau
ian curvature term since it plays no role in the interacti
between rigid inclusions. Admissible inclusion configur
tions are determined by a constrained minimization of
energy ~1!. In the variational calculation, variations of th
displacement field,h, cannot assume arbitrary values alo
the projected contact curves,c. The variations must be con
sistent with rigid body motions of the contact curves,C, and
tangent planes alongC. The variational equations consist o
the biharmonic equation forh

¹4h50 in S, ~2!

and vector-valued integral constraints that represent the
ances of forces and torques in the inclusions@7#. In the small
deflection limit, imbalances of vertical forces and horizon
torques carry by far the largest energy penalties; thus
expects a rapid relaxation to configurations in which verti
forces and horizontal torques balance. The energies of th
restricted configurations are determined uniquely by the c
figuration of projected contact curves,c. Therefore, there is
an effective multibody energy that depends on the confi
ration of projected contact curves,c, and it determines the
remaining horizontal forces and vertical torques. What n
follows is an approximate calculation of this multibody e
ergy for a system of noncircular inclusions.
4281 © 2000 The American Physical Society
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We restrict our attention to inclusions whose elliptic
cross-sectional shape is a small perturbation of a unit cir
and which are widely spaced compared to their diame
Under these conditions there are finite energy configurat
in which the mean curvature energy is concentrated in an
of thickness unity about the inclusions. The analysis of th
energy concentrations for circular inclusions was presen
in Ref. @7#. We generalize that analysis to elliptical inclu
sions. As in Ref.@7#, the mean curvature field in the neigh
borhood of an inclusion centered aboutr 50 is approximated
to leading order by the quadrupole field

k5
1

r 2
~a2 cos 2u1b2 sin 2u!. ~3!

This quadrupole field is harmonic, as required by the bih
monic equation forh, and is square integrable, which mea
that there is a finite amount of mean curvature energy c
centrated about the inclusion. In fact, the total energy c
centrated about the inclusion is approximated to leading
der by

E5pB~a2
21b2

2!. ~4!

The quadrupole coefficientsa2 ,b2 in Eq. ~3! are determined
by the position and orientations of the other inclusions
from r 50. This determination is simplest to understand
first considering the displacement fieldh5f(x) in a neigh-
borhood ofr 50 with the inclusion aboutr 50 absent, and
then analyzing the perturbation when the inclusion is
serted into the membrane. The background fieldf(x) is

FIG. 1. ~a! The membrane coordinate representation defining
various quantities used in the text.~b! An undulating inclusion-
bilayer contact curve that gives the same energy as an inclu
with an elliptic cross section.
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given to leading order by a quadratic harmonic function,f
'a/2(x1

22x2
2)1bx1x2 , wherea[]11f(0)52]22f(0), b

[]12f(0).
This approximation tof holds for r much smaller than

interinclusion distance. With the inclusion aboutr 50
present, the leading order displacement field now takes
form

h52g ln r 1S a

2
r 21

a2

r 2 2
a2

2 D cos 2u

1S b

2
r 21

b2

r 2 2
b2

2 D sin 2u. ~5!

Herea, b are the coefficients associated with the backgrou
field f(x), and as such, are assumed given. The coefficie
a2 ,b2 and a2 ,b2 are to be determined from inclusion
bilayer contact boundary conditions. Given the determinat
of a2 ,b2 , the energy~4! can be calculated. Equation~5!
represents the most general biharmonic displacement
with quadrupole symmetry which has associated mean
vature field~3! and exhibits asymptotic matching with th
background fieldf(x) for 1!r ! interinclusion distance.

Next, we formulate and outline the determination
a2 ,b2 . The contact curve is represented by the ellipser (u)
511« cos(u2v); 0!«!1 is the small eccentricity andv
represents the angle between the major axis and the
vector1. A natural generalization of the above parametriz
tion is a ‘‘scalloped’’ contact curve given byr 51
1« cos@n(u2v)# wheren is an integer greater than 3. Trea
ment of ‘‘scalloped’’ inclusions requires higher order mul
pole terms in the formulas~3!, ~5! for mean curvature and
displacement, and there are collateral modifications of
energy~4!. For elliptical contact curves, the boundary co
ditions are

h@11« cos 2~u2v!#50,
~6!

hr@11« cos 2~u2v!#52g.

These reduce to the boundary conditions for a circular inc
sion whenr 51.
For small eccentricity,«, one can Taylor expand and obta
effective boundary conditions atr 51. We will also assume
that the solution is a small perturbation from the leading te
2g ln(r) in Eq. ~5!. Thus we obtain the following effective
boundary conditions:

h~1,u!5«g cos 2~u2v!1O~«2!,
~7!

hr~1,u!52g2«g cos 2~u2v!1O~«2!.

With these boundary conditions, we can now determine
coefficients of the displacement field~5!. In particular, the
coefficientsa2 andb2 which appear in the energy~4! are

a252a2«g cos 2v,
~8!

b252b2«g sin 2v.

It will be useful to introduce the following complex notation
Define a complex curvature scalar ash5a2 ib and the elip-
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ticity scalar as:z[(«g/2)e2 i2v. The energy formula~4!
with a2 ,b2 given by Eq.~8! can be summarized as

E5pBuh2zu2. ~9!

We can think of Eq.~9! as the ‘‘energy cost for introducing
an inclusion into a background curvatureh.’’ Note that for
«50, Eq. ~9! reduces to the expression derived earlier
circular inclusions@7#.

Suppose that the background field,f, is due toN21 pro-
teins far from the origin. It is convenient to represent po
tions in the base plane by complex variablesz, and inclusion
positions byzi , i 52,...,N. The leading order harmonic com
ponent off seen in the neighborhood of the origin is give
by f'2g( i 52

N lnuz2ziu. Hence, the curvature scalar is give
by h5a2 ib5( i 51

N (g/zi
2). Therefore, the energy cost~9!

of inserting a protein at the origin into the background c
vature generated by all the other inclusions is given byE
5pBug( i 52

N (1/zi
2)2zu2. The total multibody interaction en

ergy betweenN inclusions at positionszi , i 51,...,N with
ellipticity scalarsz i is given by

E5pB(
j
Ug(

iÞ j

1

~zj2zi !
22z jU2

. ~10!

From Eq.~10!, we see that the energy of a pair of inclusio
is

E5pBS U g

z2
2z1U2

1U g

z2
2z2U2D , ~11!

wherez represents the displacement between the inclusi
We can determine the relative orientations of the two inc
sions by observing that the minimum energy of zero is
tained whenz15z25g/z2, where the subscripts refer to in
clusion 1 and 2. These complex identities define a o
parameter family of zero energy configurations,z
5A2/« exp(iv), where v15v25v is arbitrary. The exis-
tence of a family of zero energy states also follows fro
rotational symmetry. At the zero energy configuration,
two inclusions will be separated by a characteristic sep
tion of r 5A2/«, and will be oriented such that the majo
axes of both inclusions are collinear. Any other pair of o
entations will have higher energy. Figure 2 shows the ene
surface of the two inclusions as a function of their individu
orientationsv1 andv2 at a fixed relative distance. The thre
stationary points of the energy surface correspond to
three relative orientations of the inclusions depicted in Fig
The global minimum of zero energy occurs when the ma
axes are collinear:v15v250. The global maximum occur
when the major axes are parallel:v15v25p/2, which is an
unstable configuration. The energy surface has a saddle p
when the inclusions are mutually perpendicular in a T con-
figuration:v150, v25p/2, and vice versa.

We can get a better physical picture of this interaction
considering a single inclusion interacting with a given me
brane curvature, defined by the complex scalarh. The energy
~9! is minimum when the elliptical scalarz is proportional to
the curvature scalarh. Geometrically this means that th
elliptical inclusion aligns its major axis so as to match
closely as possible the local shape of the background cu
r
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ture field. This background field can be characterized loca
by its principal axes. Consider a single pair of identical
clusions separated by a distancer. Assuming proper align-
ment of the elliptical scalars, the total interaction energy
the pair is:E52pB@(g/r 2)2(«g/2)#2. A plot of the energy
as a function of separation is shown in the inset in Fig.
Note that if«50, we obtain the repulsive pair potential b
tween two circular inclusions derived in Ref.@7#: E
52pBg2/r 4.

The character of the interaction is fundamentally differe
when the ellipticity parameter«.0. As seen from Fig. 2
~inset!, the interaction between a pair becomes attractive
r .A2/« and repulsive forr ,A2/«. The energy achieves
global minimum of zero at separationr 5A2/«.

In systems ofN.2 inclusions there will be a complicate
interplay between the nonpairwise interactions and inclus
orientations. The simplest system in which this occurs is
N53. Consider three identical elliptical inclusions arrang
at the vertices of an equilateral triangle with sidesr 5A2/«
and with orientations (z50,v5p/6), (z5r ,v55p/6), and
(z5reip/3,v5p/2). The curvature scalar atz50 due to the
other two inclusions is h5(g/r 2)1(g/r 2ei2p/3)
5(g/r 2)eip/3. Therefore, the inclusion atz50 contributes
energypB@(g/r 2)2(«g/2)#2; the energy due to each of th
remaining two inclusions is the same by symmetry. The to
energy is thenE53pB@(g/r 2)2(«g/2)#2. The energy
achieves its minimum value of zero atr 5A2/«5r b , so that
this configuration of three inclusions is stable. From the
ergy formula, we can deduce that a system whose in
configuration is an equilateral triangle with the above orie
tations and whose sides are greater than this length scale
uniformly shrink until it reaches the characteristic size ofr b .
This is dramatically different than for circular symmetric in
clusions, where the smallest stable aggregate wasN55 in-
clusions arranged in the vertices of a regular pentagon@7#.

We see that in introducing an additional degree of fre
dom~inclusion orientation! to the many-body interaction, th
form of the potential energy has qualitatively changed
character from a 1/r 4 repulsion to an 1/r 2 attraction. This has

FIG. 2. The energy surface for two inclusions as a function
their individual orientations,v1 andv2 . Inset: The interaction en-
ergy between a pair of inclusions as a function of separation,r.
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important consequences with regards to protein aggrega
From the above simple examples ofN52 andN53 inclu-
sions, one can predict the position and orientation pattern
a stable aggregate of inclusions. Within our formalism, o
can further analyze higher harmonics of the shape funct
and derive other interactions which will generate new p
terns of inclusion aggregates. We do not yet know whet
such analysis will reveal an inverse mapping from kno
equilibrium patterns to unknown inclusion shapes.

We can get a picture of what happens forN.3 by exam-
ining a special case. Another striking manifestation of no
pairwise forces arises when we consider a bound pai
inclusions in a background field of distant inclusions. Co
sider again a single inclusion pair. If this pair were placed
a background field of distant inclusions, the energy of
pair will be

E5pBH U g

z2 1hb2z1U2

1U g

z2 1hb2z2U2J , ~12!

wherehb is the curvature scalar of the background field. It
convenient to assume that coordinate axes1,2 coincide with
the principal axes of the quadratic background fieldf(x). In
this case,hb is real. If the background inclusions are f
away from the target pair, we can assume that the ba
ground curvature is uniform over the region occupied
the pair. As in the previous example of a single isola
pair of inclusions, we can determine a one parame
family of zero energy configurations:z5A2/« exp(iv)/
A12(2hb /«g)exp(i2v). As before, the free parameterv is
the common orientation angle for major axis of both inc
sions relative to the1 axis. Note that this expression agre
with the result for an isolated pair of inclusions when t
background curvaturehb→0. The interesting feature here
that the one parameter family of zero energy states per
even in the presence of far field background curvaturehb
Þ0. Figure 3 is a plot of the zero energy contours for vario
hb in the ratiol[hb /(«g/2).l50 represents a single iso
lated pair of inclusions. The anglev is with respect to one o
the principal axes represented in the figure as the horizo
axis. Recall that the background curvature field sets the p
cipal axes at any given local point of the membrane.

FIG. 3. One parameter family of zero energy configurations o
bound pair in a background field of distant proteins, parametri
by l[(hb /«g/2). The horizontal axis is placed along the princip
axis of the background curvature which is concave upwards.
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Another interesting result displayed in Fig. 3 is the fa
that as the background curvature,hb , increases, the zero
energy curve and thus the ground state degeneracy incre
in size. In a companion paper, we will show that, at fin
temperatures, this increase of zero energy leads to an
tropic attraction between pairs.

From this analysis, a bound pair at its zero energy s
can persist in a background of distant inclusions. This s
gests the following scenario. Given an initial configuration
inclusions distributed in such a way that any one inclus
has a unique nearest neighbor and thereby treating the o
as a background field, the above analysis predicts a fi
equilibrium configuration consisting of islands of boun
pairs. Within each pair, the inclusions will be oriented co
linearly, with their major axes parallel. We can follow th
evolution of a field of inclusions by solving the gradient flo
system,zdx/dt52¹E(x), whereE(x) is the multibody en-
ergy ~10!. Figure 4~a! shows a simulation of a system of s
inclusions with the above initial conditions but otherwi
randomly distributed in position and orientation. The fin
equilibrium configuration shown in Fig. 4~b! consists of
three bound pairs of inclusions, each with its aligned orie
tation and characteristic separationr b , in agreement with
predictions. Each bound pair interacts very weakly w
other bound pairs, unless they are within the distance of t
characteristic separation. Within this distance, nonpairw
effects will become important, and one can further analy
whether the pairs would coalesce and form bound triplets
quartets, and so on.

Other interesting final configurations consistent with th
result are a chain of inclusions whose orientations are slo
varying with the length of the chain. For genericN-body
simulations, we have found many configurations which c
respond to extremal states which may be metastable to s
perturbations. Therefore, the final configuration generally
pends on the initial conditions. We have already encounte
such a problem when we examined the energy surface of
inclusions as a function of their orientations. Superimpos
on this energy surface is the complicated multidimensio
energy surface due to nonpairwise curvature interactions
the number of inclusions increases it becomes more diffi
to determine which among these extremal configurations
the true stable equilibria. In a companion paper, we will
troduce finite temperature effects@12#. There we will show
that incorporating thermal fluctuations effects in the interp
ticle displacements and orientations can break this deg
eracy.
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