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Effect of protein shape on multibody interactions between membrane inclusions
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The elastic interaction of membrane inclusions provides one of the simplest physical realizations of multi-
body forces. Here we show how the cross-sectional shape of the inclusion greatly changes the character of the
interaction, and illustrates a pattern formation mechanism. The formalism provides a transparent framework for
modeling bilayer-inclusion boundary effects on the multibody interaction.

PACS numbsefs): 87.15.Kg, 87.18.Hf, 68.10.Et, 87.16.Dg

There has been a great deal of interest and work owurve, since the boundary conditions will have essentially the
bilayer-mediated forces between membrane protéimdu-  same form. This can be physically realized when an inclu-
siong [1-6]. Here we address interactions that are inducedion consists of different subunits with different contact
by elastic deformations, since they are thought to play a@ngles for the bilayer, as shown in Figb}l In both cases
important role in the aggregation of membrane protein§here will be an orientation dependent interaction term in the
[7-10. An embedded inclusion creates a deformation fieldenergy, which will generate a torque on the inclusion tending
in the surrounding membrane that influences neighboring into orient itself so that the inclusion-bilayer contact curve
clusions. The nature of this deformation field is dictated bymatches as closely as possible to the local shape of the mem-
the inclusions’s elasticity and shape, and by the elastic progdrane background.
erties of the membrane. In an earlier papdr we examined In the small deformation limit|Vh(x)|<1, the local
the deformation field generated by circularly symmetric in-mean curvature o6 at X=x+23 is x(x)=3V?h(x). The
clusions embedded in a membrane whose elastic energy @astic bending energy for a membrane is giver] hij
determined by its curvature. We found that the interaction
betweenN>2 inclusions was nonlinear and strongly non- B 5 ) 5
pairwise. Therefore, simple pairwise theories of inclusion ag- Em(X)= EJS[V h(x)] dX=ZBLK dx, 1)
gregation driven by membrane curvature cannot accurately
describe assemblies of inclusions. This led to the surprisin
result that aggregates relax to stable equilibria even thoug

the pairwise component of the interaction is repulsive. Heré® ST . > . ) )

we generalize the theory to inclusions whose cross-section@EWeen rigid inclusions. Admissible inclusion configura-

shapes are not circular. The orientation angles of the inclulons are determined by a constrained minimization of the

sions appear as additional degrees of freedom which add fJ ergy(1). In the variational calculatlon,. variations of the

the complexity of possible spatial patterns. We will explicitly diSPlacement fieldh, cannot assume arbitrary values along

derive a multibody interaction that provides a simple frame-ﬂ_‘e prOJe_cteo_I contact curv_es,The variations must be con-
sistent with rigid body motions of the contact curv€s,and

work for studying how inclusion geometricross-sectional | | h iational . ist of
shape coupled with membrane geometfgurvaturé can tangent planes along. The variational equations consist o
the biharmonic equation fdr

lead to interesting and unusual aggregation behavior.
Our derivation of the interaction energy begins by repre-
senting a membrane, as a surfé@eparametrized by the V*h=0 in S, (2
height,h, above thex, y) plane. The projection d& onto the
(X, y) plane is denoted bg. Denote points inS by X, and  and vector-valued integral constraints that represent the bal-
points ins by x=(x4,X,). Unit vectors in the coordinate ances of forces and torques in the inclusipnls In the small
directions are denoted, 2, 3). Our notation is summarized deflection limit, imbalances of vertical forces and horizontal
in Fig. 1. We will restrict our attention to a membrane sys-torques carry by far the largest energy penalties; thus one
tem consisting of rigid inclusions whose contact curve withexpects a rapid relaxation to configurations in which vertical
the membraneC, is an ellipse, and the tangent planesSof forces and horizontal torques balance. The energies of these
along C have a uniform contact angle, The same math- restricted configurations are determined uniquely by the con-
ematical formalism and results derived here will also applyfiguration of projected contact curves, Therefore, there is
for inclusions with undulating bilayer-inclusion contact an effective multibody energy that depends on the configu-
ration of projected contact curves, and it determines the
remaining horizontal forces and vertical torques. What now
*Electronic address: kkim@nature.berkeley.edu follows is an approximate calculation of this multibody en-
TElectronic address: goster@nature.berkeley.edu ergy for a system of noncircular inclusions.

hereB is the bending modulus. We neglect the total Gauss-
n curvature term since it plays no role in the interaction
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given to leading order by a quadratic harmonic functign,
~ al2(x3—Xx3) + BX1Xp, Where a=d11¢(0)=—dop(0), B
=3d1,¢(0).

This approximation tog holds forr much smaller than
interinclusion distance. With the inclusion about=0
present, the leading order displacement field now takes the

form
__ X, X2 R
h ylnr+(2r +r2 5 cos 29
B , B2 by
+ Er +r7-—? sin 26. (5)

Herea, B are the coefficients associated with the background
field ¢(x), and as such, are assumed given. The coefficients
as,B, and a,,b, are to be determined from inclusion-
bilayer contact boundary conditions. Given the determination
of a,,b,, the energy(4) can be calculated. Equatiof®)
represents the most general biharmonic displacement field
with quadrupole symmetry which has associated mean cur-
vature field(3) and exhibits asymptotic matching with the
(b) background fieldp(x) for 1<r < interinclusion distance.
Next, we formulate and outline the determination of
FIG. 1. (8) The membrane coordinate representation defining thea, ,b,. The contact curve is represented by the ellips®)

various quantities used in the texb) An undulating inclusion- =1+ ¢ cos@—w); 0<e<1 is the small eccentricity ané
bi_layer contact curve tha_t gives the same energy as an inclusiofapresents the angle between the major axis and the unit
with an elliptic cross section. vector 1. A natural generalization of the above parametriza-

tion is a ‘“scalloped” contact curve given by =1
We restrict our attention to inclusions whose elliptical ¢ cogn(6—w)] wheren is an integer greater than 3. Treat-
cross-sectional shape is a small perturbation of a unit circlenent of “scalloped” inclusions requires higher order multi-
and which are widely spaced compared to their diameteryole terms in the formulag3), (5) for mean curvature and
Under these conditions there are finite energy configurationgisplacement, and there are collateral modifications of the

in which the mean curvature energy is concentrated in annubnergy(4). For elliptical contact curves, the boundary con-
of thickness unity about the inclusions. The analysis of thesgitions are

energy concentrations for circular inclusions was presented

in Ref. [7]. We generalize that analysis to elliptical inclu- h[1+&cos2A 6—w)]=0,
sions. As in Ref[7], the mean curvature field in the neigh- (6)
borhood of an inclusion centered abost0 is approximated h[l+ecosA0—w)]=—1.

to leading order by the quadrupole field

These reduce to the boundary conditions for a circular inclu-
1 sion whenr=1.
k= —(a,C0s 20+ b, sin 26). (3)  For small eccentricityg, one can Taylor expand and obtain

effective boundary conditions at=1. We will also assume
that the solution is a small perturbation from the leading term

This quadrupole field is harmonic, as required by the bihar— yIn(r) in Eq. (5). Thus we obtain the following effective

monic equation foh, and is square integrable, which meansboundary conditions:

that there is a finite amount of mean curvature energy con-

centrated about the inclusion. In fact, the total energy con- h(1,0)=&ycos 26— w)+0(&?),
centrated about the inclusion is approximated to leading or- ) 7
der by hi(1,0)=—7y—eycos20—w)+0(&).
E— TrB(a§+b§). @) With these boundary conditions, we can now determine the

coefficients of the displacement fie(®). In particular, the

o ) ) coefficientsa, andb, which appear in the energy) are
The quadrupole coefficients, ,b, in Eq. (3) are determined

by the position and orientations of the other inclusions far a,=2a— &y COS 2w,
from r=0. This determination is simplest to understand by (8)
first considering the displacement fidid= ¢(x) in a neigh- b,=2B—¢evysin2w.

borhood ofr =0 with the inclusion about=0 absent, and
then analyzing the perturbation when the inclusion is in-It will be useful to introduce the following complex notation.
serted into the membrane. The background fiélgk) is  Define a complex curvature scalaras «—iB and the elip-
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ticity scalar as:¢=(evy/2)e '?“. The energy formula4) P
with a,,b, given by Eq.(8) can be summarized as e = e

E=7B|7— {2, © A

We can think of Eq(9) as the “energy cost for introducing // R .
an inclusion into a background curvaturg’ Note that for 40 S
£=0, Eq. (9) reduces to the expression derived earlier for
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by ¢~ —y=N_, In|z—z|. Hence, the curvature scalar is given
by 7=a—iB=3N,(y/Z?). Therefore, the energy cod)

of inserting a protein at the origin into the background cur-
vature generated by all the other inclusions is givenkdy

=7B|y=N ,(1/z%) — ¢|?. The total multibody interaction en- FIG. 2. The energy surface for two inclusions as a function of
ergy betweenN inclusions at positiong;, i=1,...N with their individual orientationse; andw,. Inset: The interaction en-
ellipticity scalars; is given by ergy between a pair of inclusions as a function of separation,
E=mB> 1 s 2 (10) ture field. This background field can be characterized locally
] 7#,- (zj—zi)2 J by its principal axes. Consider a single pair of identical in-

clusions separated by a distarrceAssuming proper align-
From Eq.(10), we see that the energy of a pair of inclusionsment of the elliptical scalars, the total interaction energy of

is the pair is:E=27B[(y/r?) — (¢ y/2)]?. A plot of the energy
) 5 as a function of separation is shown in the inset in Fig. 2.
v v Note that ife =0, we obtain the repulsive pair potential be-
E=7B 2 Qo + 2 ¢ ) (1D tween two circular inclusions derived in Ref7]: E
=2mwBy?Ir4.

wherez represents the displacement between the inclusions. The character of the interaction is fundamentally different
We can determine the relative orientations of the two incluwhen the ellipticity parametes>0. As seen from Fig. 2
sions by observing that the minimum energy of zero is at{insed, the interaction between a pair becomes attractive for
tained when, = ¢,= y/z2, where the subscripts refer to in- I>\2/e and repulsive for <\2/e. The energy achieves a
clusion 1 and 2. These complex identities define a onglobal minimum of zero at separation= \2/s.
parameter family of zero energy configurationg, In systems oN>2 inclusions there will be a complicated
= \/ﬂeprw), where w;=w,=w is arbitrary. The exis- interplay between the nonpairwise interactions and inclusion
tence of a family of zero energy states also follows fromorientations. The simplest system in which this occurs is for
rotational symmetry. At the zero energy configuration, theN=3. Consider three identical elliptical inclusions arranged
two inclusions will be separated by a characteristic separaat the vertices of an equilateral triangle with sides\/2/e
tion of r= 2/, and will be oriented such that the major and with orientations4=0,0=7/6), (z=r,0=>57/6), and
axes of both inclusions are collinear. Any other pair of ori-(z=re' ™ w=/2). The curvature scalar at=0 due to the
entations will have higher energy. Figure 2 shows the energgther  two  inclusions is 7= (y/r?)+ (y/r2e'?™)
surface of the two inclusions as a function of their individual = (y/r?)e'™2. Therefore, the inclusion a=0 contributes
orientationsw; andw,, at a fixed relative distance. The three energymB[ (y/r?)— (ev/2)]?; the energy due to each of the
stationary points of the energy surface correspond to théemaining two inclusions is the same by symmetry. The total
three relative orientations of the inclusions depicted in Fig. 2energy is thenE=3mB[(y/r?)—(ey/2)]?>. The energy
The global minimum of zero energy occurs when the majomchieves its minimum value of zero st \2/e=r,, so that
axes are collinearw;= w,=0. The global maximum occurs this configuration of three inclusions is stable. From the en-
when the major axes are parallel; = w,= /2, which is an  ergy formula, we can deduce that a system whose initial
unstable configuration. The energy surface has a saddle poiabnfiguration is an equilateral triangle with the above orien-
when the inclusions are mutually perpendicularai T con-  tations and whose sides are greater than this length scale will
figuration: w;=0, w,= /2, and vice versa. uniformly shrink until it reaches the characteristic size pf

We can get a better physical picture of this interaction byThis is dramatically different than for circular symmetric in-
considering a single inclusion interacting with a given mem-clusions, where the smallest stable aggregate Ma$ in-
brane curvature, defined by the complex scalafhe energy clusions arranged in the vertices of a regular pentd@on
(9) is minimum when the elliptical scaldris proportional to We see that in introducing an additional degree of free-
the curvature scalarp. Geometrically this means that the dom(inclusion orientatiopto the many-body interaction, the
elliptical inclusion aligns its major axis so as to match asform of the potential energy has qualitatively changed its
closely as possible the local shape of the background curvasharacter from a tf repulsion to an 17 attraction. This has
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FIG. 4. (a) Initial configuration of six inclusions(b) Final con-
figuration of three bound pairs.

Another interesting result displayed in Fig. 3 is the fact
that as the background curvaturg,, increases, the zero
energy curve and thus the ground state degeneracy increases

FIG. 3. One parameter family of zero energy configurations of in size. In a companion paper, we will show that, at finite
- P y ay 9 3emperatures, this increase of zero energy leads to an en-

bound pair in a backgroupd field of qistant proteins, parametrize ropic attraction between pairs.
by_)\z(nb/m//Z). The horizontal axis is placed along the principal From this analysis, a bound pair at its zero energy state
axis of the background curvature which is concave upwards. can persist in a background of distant inclusions. This sug-
, . . _ gests the following scenario. Given an initial configuration of
important consequences with regards to protein aggregatiofhclusions distributed in such a way that any one inclusion
From the above simple examples®f=2 andN=3 inclu-  has a unique nearest neighbor and thereby treating the others
sions, one can predict the position and orientation patterns @fs a background field, the above analysis predicts a final
a stable aggregate of inclusions. Within our formalism, onesquilibrium configuration consisting of islands of bound
can further analyze higher harmonics of the shape functiorpairs. Within each pair, the inclusions will be oriented col-
and derive other interactions which will generate new patdinearly, with their major axes parallel. We can follow the
terns of inclusion aggregates. We do not yet know whetheevolution of a field of inclusions by solving the gradient flow
such analysis will reveal an inverse mapping from knownsystem,/dx/dt=— VE(x), whereE(x) is the multibody en-
equilibrium patterns to unknown inclusion shapes. ergy (10). Figure 4a) shows a simulation of a system of six
We can get a picture of what happens for 3 by exam-  inclusions with the above initial conditions but otherwise
ining a special case. Another striking manifestation of non+andomly distributed in position and orientation. The final
pairwise forces arises when we consider a bound pair oéquilibrium configuration shown in Fig.(d) consists of
inclusions in a background field of distant inclusions. Con-three bound pairs of inclusions, each with its aligned orien-
sider again a single inclusion pair. If this pair were placed intation and characteristic separatiop, in agreement with
a background field of distant inclusions, the energy of thepredictions. Each bound pair interacts very weakly with
pair will be other bound pairs, unless they are within the distance of their
characteristic separation. Within this distance, nonpairwise
2 effects will become important, and one can further analyze
], (12)  whether the pairs would coalesce and form bound triplets or
quartets, and so on.
) ) ) Other interesting final configurations consistent with this
wherez,, is the curvature scalar of the background field. ItiS o5 i are a chain of inclusions whose orientations are slowly
conve_me_nt to assume that coor(_lllnate ax,éscoque with varying with the length of the chain. For genefiébody
the principal axes of the quadratic background figld). In gimylations, we have found many configurations which cor-
this case,7, is real. If the background inclusions are far \asnond to extremal states which may be metastable to small
away from the target pair, we can assume that the backserrhations. Therefore, the final configuration generally de-
ground curvature is uniform over the region occupied byyends on the initial conditions. We have already encountered
the pair. As in the previous example of a single isolatedsch 4 problem when we examined the energy surface of two
pair of inclusions, we can determine a one parametefyciysions as a function of their orientations. Superimposed
family of zero energy configurationsz=\2/e exp(w)  on this energy surface is the complicated multidimensional
V1-(27,/2 y)exp(2w). As before, the free parameteris  energy surface due to nonpairwise curvature interactions. As
the common orientation angle for major axis of both inclu-the number of inclusions increases it becomes more difficult
sions relative to thd axis. Note that this expression agreesto determine which among these extremal configurations are
with the result for an isolated pair of inclusions when thethe true stable equilibria. In a companion paper, we will in-
background curvaturey,— 0. The interesting feature here is troduce finite temperature effedi$2]. There we will show
that the one parameter family of zero energy states persisthat incorporating thermal fluctuations effects in the interpar-
even in the presence of far field background curvatyge ticle displacements and orientations can break this degen-
#0. Figure 3 is a plot of the zero energy contours for variouseracy.
7, in the ratioh=7,/(ey/2).\=0 represents a single iso-
lated pair of inclusions. The angleis with respect to one of ACKNOWLEDGMENTS
the principal axes represented in the figure as the horizontal
axis. Recall that the background curvature field sets the prin- K.K. and G.O. were supported by the NSF through Grant
cipal axes at any given local point of the membrane. No. DMS 9220719.
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